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Abstract

Using the binder-contact laws in deriving the stress—strain relations for a composite with elastic particles/inclusions/
fibers and a Maxwell type of viscoelastic matrix/binder is presented in this article. This derivation is physically based
and it establishes a functional correlation of how the viscosity at the binder/matrix level is blended into that at the
composite level. The derived viscoelastic stress—strain equations are multiaxial, and their equivalent models are ana-
lyzed for three scenarios. A confined creep simulation is also given with its predications being compared with the
experimental results. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Constitutive analysis of the composites that comprise elastic particles/inclusion/fibers and a viscous
matrix/binder is an important subject, because those composites assemble many realistic engineering
materials. The methods in analyzing those composites can be found in a number of published studies. A
well-known method is an elastic analogy that follows the so-called ““corresponding theory’, in which the
viscoelastic stress—strain analysis can be carried out in the Laplace domain and be treated as if it follows the
elasticity theory. The inverse Laplace transform then can be applied to the Laplace stress and strain
quantities to obtain the real time domain solutions. The early work following this approach can be found in
Schapery (1974), and Scherer and Rekhson (1982). Hashin (1983) gave an overview in this area prior to
1983. Another way to simulate the viscous significance is to employ the potential theory or Eshelby’s
principle that are modified to include the viscous effect (Castaneda and Willis, 1988; Chen and Cheng,
1997). Since the Laplace transform or potential theory usually requires a lengthy mathematical manipu-
lation, an engineering approach can be adopted in estimating the matrix viscous response by adding a
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viscous term to the “regular” elastic stress—strain equations, as shown in the work of Zabaras and Pervez
(1990) on the viscous damping approximation of laminated plates. This type of approach is mostly im-
plemented in conjunction with a numerical method like FEM.

In this article, a contact mechanism based theory is presented in deriving the stress—strain relationship
for a viscous matrix composite. Here, the contact mechanism is the force-displacement interaction of
particle—particle contact (contact laws) that serves as the vehicle that transforms micro stress/strain vari-
ables to macro stress/strain variables defined in a particle assembly. Due to the discrete feature of a particle
assembly, the local stress field is easily defined by using the theorem of stress means. Two type of variables
then are introduced. One is the “branches”, which are vectors connecting the centroids of contacting
particles. The other is the variables that characterize the statistical natures of particle packing such as
coordination number, and other distribution configurations. Subsequently, the strain field can be defined in
conjunction with those types of variables and the stress—strain equations can then be established.

Earlier work in this area can be found in soil and particulate mechanics in dealing with a particle as-
sembly. Finney (1970) and Shahinpoor (1981) employed the “Voronoi Polyhedra” in describing the be-
haviors of a granular medium. Jenkins (1987) and Bathurst and Rothenburg (1988) derived the stress—strain
relationships in the framework of a microstructural continuum approach. Satake (1982), Oda et al. (1982),
Kanatani (1984) and Cowin (1985) introduced the concept of ““fabric tensor” to accommodate the statis-
tical nature of particle packing. Chang et al. (1990) characterized the skeleton of a particle assembly by
using a density distribution function of inter-particle contacts.

The study of contact laws itself is an active subject. The most known case in this subject is the Hertz
contact problem (Johnson, 1989). A good collection can be found in the book of Johnson (1989) and
Gladwell (1980). Recently, Zhu et al. (1996a,b and 1997a) derived the closed-form contact laws for a system
of two-particle bound with a Maxwell or Voigt type of viscoelastic binder for three modes: compressive,
tangential and rolling. Those Maxwell contact laws will be used later in this study to formulate the stress—
strain equations.

With the presence of a Maxwell matrix/binder, now the material can be regarded as a composite of a
“coated” particle assembly. The modification is made in this article by replacing the particle—particle (or
particle-binder(elastic)—particle) contact laws with those of particle-binder (Maxwell)—particle laws on the
basis of the early work in the soil and particulate mechanics cited above. The viscous nature of the binder/
matrix then erects its effect on the stress—strain derivation through the incorporation of those binder-
contact laws. This is the major work of this article. In addition, it contains a model analysis that dem-
onstrates the equivalent viscoelastic behavior in responding to a Maxwell binder composite. A creep
simulation of asphalt concrete is then presented, and its predictions are compared with the corresponding
experimental results.

2. Dry particle results

Based on the work of those researchers (Christoffersion et al., 1981; Rothenberg and Selvafurai, 1981;
and Chang et al., 1996; etc.), the volume averaged stress field o;; defined in a granular medium V of dry
particles can be formulated by

1 M
oy ==Y L") fi(x"), x" €V, (2.1)
m=1

v
where L;(x™) is the branch vector and f;(x™) represents the inter-particle contact forces at the contact point
x™ within the space V in the global coordinate system. M is the total number of contacts and »_ denotes a
summation over all contact points x” (Fig. 1).



H. Zhu | International Journal of Solids and Structures 38 (2001) 4477-4488 4479

»
»

X,
X

Fig. 1. Sketch of the coordinates (n,s, ), contact point x”, the contact forces f;(x”") and the branch vector L;(x").

The contact laws then are introduced, which relate the discrete contact forces f;(x”) in a local coordinate
system (n;(x"), s;(x™), t;(x™)) with the corresponding displacement components d,;(x™) (or relative ap-
proaches as termed in the contact mechanics) also in the local coordinate system (n;(x"), s;(x™), t;(x™)):

Sa(¥") = Ku(x™)0,(x"),
Jo(x™) = Ko(x™)8,(x"), (2.2)

where K,(x"), K,(x™) and K,(x™) are the normal, first tangential and second tangential contact stiffness
coefficients at x™. The (n;(x"), s;(x™), t;(x™)) coordinates are placed at the contact point x” (Fig. 1). n;(x™) is
the unit vector normal to the contact surface at the contact point x”, s;(x”) and ¢;(x") are two unit vectors
perpendicular to each other as well as to n;(x™).

Assuming a uniform strain field, the branch vectors L;(x™) can be further related to ¢;, the volume
averaged strain field, by the following relation:

(") = Li(x")ey, (2.3)

and consolidating Egs. (2.1)—(2.3) yields the stress—strain equations for the particle assembly with an ap-
propriate coordinate transform scheme (Chang and Misra, 1990):

oy = { %ZLi(xm)K,,(x”’)Lk(x”’) }Skh
K (x™) = Ky (x™ ) (X" )my (x™) + K (x™)s;(x" )51 (x™) + K, (") (x™ )t (x"). (2.4)

Eq. (2.4) represents the result of the averaged stress—strain relationship defined in a particle assembly and
derived on the contact mechanism based homogenization process.

3. Maxwell binder effect

The contact laws given in Eq. (2.2) are valid for describing the force-deformation relation of a system of
two elastic particles bound with an elastic binder. The presence of a Maxwell binder in the particle assembly
requires a modification of those contact laws to accommodate the viscoelastic effect. Following the work of
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Zhut et al. (1996a,b), the contact laws for a system of two particles bound with a Maxwell binder now
become time dependent, and have the following representations:

Sux") = / K, Jye 05, (xm) dr,
fi(x™) = K (x™) 0, (x™) — KSASe_”“( "= r)5S(x'")d'5, (3.1)

£i(6M) = K,(x"),(x") — [ K Ae HEMI0s, (v dt,
0
where the scale parameter ¢ is the time variable. 1,(x™), A(x™) and 4,(x™) are inverse to what is the so-called
time retardation parameters, which depend on the viscosity and spring constants of the Maxwell model,
and their definitions can also be found in Zhu et al. (1996a,b).
Replacing Eq. (2.2) with Eq. (3.1) and repeating the steps given in the Section 2, the stress—strain re-
lations for a particle assembly bound by a Maxwell binder are obtained:

1 % / / / /
O',‘j(l‘) = {VZLf(xm)Kﬂ(x"‘)Lk(xm)}SH — / { ZL * s ,I)Lk (x’”,t)}ek;(t)dt, (32)
m=1
where Kj;(x") is defined in Eq. (2.4), and
K; (", 0,0) = K,,(x’”,t')n-(x’”)n,(x’”)/l,,(xm)e’”” " +K( 1)s;(x" )51 (x™) A () )
+K,( , ) ()1 () 2 (x™)e A" )t=1) (3.3)

Eq. (3.2) is of the type of Volterra equations of the second kind. It is easily observed that, when the
integral portion of the right-hand side of Eq. (3.2) vanishes, Egs. (3.2) and (2.4) become identical. This
means that the effect of Maxwell binder viscosity is solely represented by the integral portions of the
equation. The differential representation for Eq. (3.2) is also available, but it is much lengthy in comparison
with Eq. (3.2).

The derived stress—strain relations given in Eq. (3.2) are unrefined. Many levels of simplification are
available based on the introduction of characteristic distributions like those of the particle location, size
gradation and angularity, the coordination number, etc. Those distributions will determine the effective
moduli and the anisotropic characteristics of the composite. Following the work of Chang and Ma (1992)
on the dry particle assembly, an isotropic stress—strain relation can be derived:

t
O'ij(l‘) = 4O(K,7(3ij l:gkk(t) — / lnei)'"air/)ﬁkk(t/) dl‘l:| — 4OCKS(3U' l:Skk(t) — / A (= t>?kk(t/) dl‘il
0

t
+ 84K, [pl,() /zn e )dt] +12a1<s[e,-j() /)e =g, (1 )dt] (3.4)
where o is defined as (Chang and Ma, 1992)
MR?
= 3.5
°= oy (3.5)

and J;; is Kronecker delta, the subscript & is the dummy index, K, and K; represent the averaged normal
and tangential contact stiffness coefficients, respectively. 4, and J; represent the averaged normal and
tangential time retardation parameters, respectively. R is the averaged characteristic dimension of the
particles. o can further be interpreted as (Chang et al., 1990)
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Ne

a:m, (36)

where e is the air void ratio and N, is the averaged coordination number.

4. Model analysis I

Eq. (3.2) denotes the stress—strain relationships for a particle assembly bound with a Maxwell binder.
Naturally, the question rises as to what is the equivalent viscoelastic model responding to Eq. (3.2). For
answering this question, an uniaxial model analysis is given in this section.

By setting all the stress and strain components to zero except o;; (now denoted by o) and ¢; (now
denoted by ¢) in Eq. (3.2), we obtain an uniaxial o—¢ equation:

M

o(t) =Y [l + Lo + L,

m=1

t
In,m == Kn,m |:8(t) - / /1,,1”16)""’”(t‘[)g(‘c)df:| s
0

4.1
t
I‘V»m = Bym |:8(t) - / )hvﬁme_)ﬂ'm(I_T)E(T)df]7
0
t
Liw =K n {8(1) - / /L_yme)"'”’(”)s(r)dr} ,
0
where
LK, e
n,m % 9
o LEmsEnK ()
S,m v ) (42)
K, :L%(xm)t%(xm)Kt(xm)
s V )

Inm = Aa(X"), Ssm = As(x™), Do = A(x™).

It can easily be verified that, based on the theory of classic viscoelasticity, the equivalent viscoelastic
model equation (4.1) represents a generalized Maxwell model with 3M units (Fig. 2).
Next, we apply the Laplace transform to Eq. (4.1), and it yields

-1

Y Kum Kom Kim a(p)
&(p) = e e : 4.3
) lz<p+ﬂvn,m P+ A p+?~z,m> P *3)

m=1

where 6(p) and &(p) are the strain and stress defined in the Laplace domain.
Based on a lemma given in the book of Bland (1960), the following identity can be proclaimed:

M -1 M1
Kmm Krm Ktm P 1 p
) oy D e e
[ (pHn‘m P+ dsm p+m,m>] Ko ne 5= Mo+ 2m)

m=1

- M (4.4)
Knm Ks m K m
KC = Z(K”vm + KS:m + Kt,m)a e = : :( 1 —+—+ - )7
1

Anm /ls,m j~t‘m

m=1 m=
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T o(t)

Nn,1| MNs.1 N1 M2 | Ns2 Nt2 Nn,M [Ns,M NeM
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l &(t)

Fig. 2. Generalized Maxwell model with 3M units.

where, 1,, and 4,,, m =1,2,...,(3M — 1), are all positive, and they depend on K, ,,, Ksms Kim» Anms As.m and
Aemsm=1,2,... M.

It needs to point that since K, and #, defined in Eq. (4.4) are as the summation over the coefficients of
contact stiffness and viscosity at each and every contact point x” in all three directions with a V'sitting in the
denominator (Eq. (4.2)), they are a volume averaged quantity. This will be further discussed later in this
article.

With the help of Eq. (4.3), the inverse Laplace transform to Eq. (4.4) is readily available, and it reads

a(t) /t o(t)dr 1 /’ (=)
e(t) =—+ — — e " Yag(r)dr. 4.5
R e o R =

Clearly, the stress—strain equation given in Eq. (4.5) indicates that its corresponding viscoelastic model is
a generalized Voigt model (Fig. 3), which is equivalent to the generalized Maxwell model given in Fig. 2.

The above analysis is also valid for the case of a15(¢)—¢€12(¢), 620 (t)—ex0(t), a13(¢)—€13(f), 023(¢)—€23(¢), and
a33(t)—¢33(¢), and the same conclusion can be drawn with regard to the type of viscoelastic model among the
paired stresses and strains.

ni n2 Ne

MNe K

Ki=miA 1 Ko=mad o KaM-1=M3m-12 3me1

Fig. 3. Generalized Voigt model.
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5. Model analysis 11

A model analysis to Eq. (3.4) is conducted in this section. Again, by letting all stress and strain com-
ponents vanish except one normal stress, denoted by ¢, and one normal strain, denoted by ¢, Eq. (3.4) now
reads

t t
a(t) = 120K, {s(l) — / ),,,ei”(””s(t’)dt’} + 8K [s(t) - / }vsei“”(”/)s(t’)dt/}, (5.1)
0 0

and in the Laplace domain, Eq. (5.1) has the following expression:

8@(uwg%w&)qm_< Lo, 1 +(@—mu—@f%@% 52)

Ptin ptis p K, + K, pln,+n,)  Z(K,+K)p+ )
where
! ;L’HK/ ASK/ K/ K,
SRR k120K, K= S8uK,, =5, = (5.3)
K + K/ " : "

Again, the time domain expression for Eq. (5.2) can be obtained by using the method of inverse Laplace
transform:

a(t) "o(t)dr (A, —A)(A = A) /’ P
t) = i dr. 5.4
R Al s v icer o g KRRGL G4

It can easily be seen that Eq. (5.4) viscoelastically responds to what a four-element model does (Fig. 4).

In addition to the normal stress—strain case, by an analogy, the model analysis can also be extended to
the shear stress—strain case, and the conclusion with regard to the model representation remains the same
for both normal and shear cases.

6. Model analysis III

Two uniaxial model analyses are given in the previous sections. In this section, based on Eq. (3.4), a two-
dimensional modeling will be pursued on an axially symmetric representation. Assuming an uniform stress—
strain state, the non-vanishing components are (0., 6, and ay) and (e, & and &) with the conditions that
o, = o9 and ¢, = g, Eq. (3.4) in cylindrical coordinates (r,z, #) now becomes

Fig. 4. Four-element model.
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t
o.(t) = 12ocKn[ / Jpe =) )dt} + 8uK, [sz(t) —/ isei“"(”’)sz(t/)dt/}
0
+ 8OCK,,|: / Jpe =0 )dt] — 80K [sr( ) — / Jye =) (t’)dt’]7 (6.1)
0

t t
o.(t) = 40K, [sz(t) — / i,,e_;‘”(t_’/)ez(t’)dt’} — 40K, [az(t) — / }me_iﬁ””_’,)sz(t’)dt’}
0 0
t t
+ 160K, |:8r(l‘) - / i,,e_)'”“_’/)s,.(t')dt’} + 4ok {sr(t) - / ise_;“'”(’_/)sr(t')dt']. (6.2)
0 0

Eq. (6.1) presents a 2-axial viscoelastic behavior. Fig. 5 shows an attempt to graphically depict an
equivalent 2-axial model of Eq. (6.1). Though with a ¢.-axial Maxwell unit sitting on the stress side, which
characterizes the reaction to the imposed lateral radius stress (Poisson’s effect), the equivalent model may
still be called a two-axial generalized Maxwell model since the inequality, K, > K, is always valid (Zhu
et al., 1996a).

Egs. (6.1) and (6.2) are referred as the relaxation model. The corresponding creep model is also available
by applying the Laplace transform technique to Egs. (6.1) and (6.2). After a lengthy manipulation, the
creep model of Egs. (6.1) and (6.2) is obtained as

e(t) = (1) + 26,(1) = az(tézlgfr(t) N /0 [0-(7) —;?;ér)]i,,dr’ (6.3)
~ 0.80.(1) — 0.40,(1) "10.80,(t) — 0.40,(1)] A Asdr
“0=""% Kk T /0 (K: + K7
~ /’ [0.85.(7) — 0.40,(t)] (A — A7) (4 — )&+ -2)dr L 2K [0:(0) + 20,(1)]
0 (K:+ KA 15K*(K* + K¥)
12K [0-(7) + 20,(x))A2de 1 2K [0.(t) + 20,(7)] (A — AT)2e F 9de
/0 I5K; (K, +K)A" /0 15K, (K; +K:)2" ’ ©4

where ¢,(¢) in Eq. (6.3) is the volumetric strain (the first strain invariant), and

Gy &

|
82¢

Fig. 5. Two-dimensional equivalent visco-elastic model.
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K+ K
K = 80K, K = 120K, i =t (6.5)
" 5 K K:

One important laboratory evaluation of asphalt concrete quality is to conduct confined or unconfined
creep tests on the cylindrical specimens of hot mix asphalt (HMA). Based on his experimental work,
Monismith et al. (1994) indicates that asphalt pavement with good quality exhibits isotropic responses.
Whereby, Egs. (6.3) and (6.4) may be used to simulate HMA creep tests. A creep example is implemented
following the input and testing results reported by Brown and Cooper (1980). The sample dimension is a
cylinder of 6 in. in diameter and 12 in. in height. The applied axial and lateral compressive pressures are

0.267 and 0.167 MPa, respectively. Two quantities ¢, (volumetric strain and defined in Eq. (6.3)) and &
(shear strain) are computed. Where ¢, is defined as

& =136 — &,). (6.6)

K,, K;, 2, and A, shown in Eqgs. (6.3) and (6.4) are specified in the work of Zhu et al. (1996a,b). Those

parameters along with o are related to the physical and geometric properties of asphalt and aggregates with
the input as follows:

averaged aggregate size S = 5.682 mm (R = 2.841 mm).

averaged contact radius a =k x R (k= 0.1 at t = 0),

averaged thickness of asphalt binder 4, = 0.075 mm at ¢ = 0 (Lee and Dass, 1993).
Young’s modulus of aggregates E, = 27.56 GPa (4 x 10° psi) (Trefethen, 1959),
shear modulus of asphalt binder G, = 0.1 GPa (Lewandowski et al., 1992).
Poisson’s ratio for aggregates = 0.15,

coordination number N, = 7.0 (Lee and Dass, 1993).

VTM = 0.05,

binder viscosity constant = 1.0 GPas (Hopman et al., 1992).

A discretization scheme is employed with respect to the time variable ¢, and the creep responses are
computed. The details of the scheme can be found in the report by Zhu and Dass (1996). Those numerical

responses then are plotted in Figs. 6 and 7 along with the experimental results reported by Brown and
Cooper (1980).
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Fig. 6. Volumetric strain versus time. The solid line represents the simulation result, and the symbols are based on the test results
reported by Brown and Cooper (1980).
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Fig. 7. Shear strain versus time. The solid line represents the simulation result and the symbols are based on the test results reported by
Brown and Cooper (1980).

Figs. 6 and 7 show that the model equation (6.4) can fairly capture the creep behavior of asphalt
concrete, though it appears that this model may be considered as the first step in developing more robust
analytical simulations (Zhu, 1998).

7. Discussions

This article presents a contact mechanism based constitutive theory in which, the binder contact laws
play a critic role in transforming the characteristic of Maxwell type of viscoelasticity at the binder/matrix
level to that at the composite level in a parallel manner. The transform is pursued in a fashion that preserves
a clear physical rationale and requires, in comparison with the integral transform method, straightforward
and less cumbersome mathematical manipulations. A Maxwell type of binder results in a Maxwell type of
the composite as Eq. (4.1) and Fig. 2 indicate.

The model analysis provides an insight of how the stress filed, ¢;;, and the strain field, ¢;, are related
functionally. Here, g;; and ¢;; are defined as a volume averaged quantity. The first-order approximation on
the relation between o;; and ¢; in an uniaxial case is actually governed by a single Maxwell element as
shown in Eq. (4.5) with the elastic and viscosity constants being K. and 7, respectively. K, and 7, are
defined in Egs. (4.2) and (4.4) and are computed by the summation of contact stiffness and viscosity over all
contact points x” in V, whereby they are also volume averaged quantities. This indicates that the volume
averaged physical and geometric properties of a composite delegate the defining of the volume averaged
stress—strain relation, and the delegation assures that using the averaged stress and strain fields to describe
the mechanical behavior of a composite is both feasible and physically consistent.

When particles/fibers/inclusions are elastic and the matrix/binder follows a Maxwell type of viscoelas-
ticity, it appears intuitive that the composite may behave like a viscoelastic solid that can be represented by
generalized Maxwell model as given in Fig. 2. But the issue is that how many Maxwell units are needed at
the composite level. The model analysis provides an understanding regarding this issue. It shows that
depending on the simplification level appropriate for a specific problem, the simplest one is a four-element
model as given in Fig. 4. In addition, both Figs. 3 and 4 contain one Maxwell unit, which characterized the
volume averaged correspondence between the volume averaged stress and volume averaged strain, the issue
now is the determination of the second-order of approximation in the stress-strain relation. In fact, it can
be seen that the Kelvin unit in Fig. 4 represents the interaction term between two components: the normal
component and the shear component, as shown in Eq. (5.4).
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As the example shown in Egs. (6.2), (6.4)—(6.6) as well as in Figs. 5 and 6, one application of this theory
is in the area of modeling asphalt concrete. In fact, using the model of generalized Maxwell elements to
simulate the behavior of asphalt concrete has been reported by a number of researchers (Bouldin et al.,
1993; Monismith et al., 1994). In those reports, the issue of why to employ a generalized Maxwell model
and how many units of single Maxwell element are needed is determined empirically. The contact mech-
anism based theory presented in this article therefore provides a rational justification to use a generalized
Maxwell model in representing asphalt concrete as well as how many units are needed in the representation.

Uniaxial viscoelastic modeling of a viscous matrix composite requires a huge effort, but multiaxial
modeling is more challenging. In fact, very limited reports have been seen in the multiaxial analytical
studies on viscous matrix composites. It appears that the derivation of Egs. (3.2) and (3.4) are important
that they may provide a platform upon which such studies can be pursued. Indeed, the confined creep case
given in this article serves as an example of how this pursuit can be done. In addition, a quite compre-
hensive study including the particle angularity consideration has been carried out also on the same platform
(Zhu and Nodes, 2000).

It appears that this contact mechanism based composite theory aims to address the issue of charac-
terizing the behavior of viscous matrix composites. Many issues remain to be studied. For example, the
matrix plays its role not only through the binder contact laws, but also has the role coming from its “non-
contact” controlled portion, or pore pressure effect, which is not included in this study. As such, this theory
may be applicable to the case when particles/fibers/inclusions are much more rigid than that of the matrix or
the composites having some air voids like asphalt concrete. One way to incorporate the effect of “non-
contact” portion of the matrix or pore pressure is to use a geometric equivalent approach in conjunction
with the binder contact laws (Zhu et al., 1997b), and this incorporation on a Maxwell matrix composite will
be reported separately.
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